
1. INTRODUCTION 

 

The use of formal methods belongs more and 
more to the core technologies in the proof of cor-

rectness of IT systems, including validation and 

verification (V&V) but their use in dependability 
assessment is quite limited. A question of the 

type ”Does the system have a potential deadlock 

due to a design fault?” belongs to the standard 
problems addressed by formal methods embed-

ded in the design flow. However, very little has 

been done in the context of system design for 
dependability to answer questions, like ”May a 

faulty component result in a potential deadlock 
blocking some vital system functionality?”. 

The paper presents an approach facilitating 

the use of formal methods in dependability 
analysis despite of the modeling and analysis 

complexity originating in the large number of 

faulty cases. 
 

 

1.1 Research challenges 

 

The main advantage of formal methods is, their 

exhaustiveness, as they examine the system thor-
oughly by checking all the potential cases. A ma-

jor obstacle in their practical use for V&V of en-

gineering designs is the strong limitation on 
model complexity for practical feasibility of the 

underlying computations, thus either the faithful-

ness of the model has to be sacrificed by a high 

level of abstraction, or a proper workaround has 
to be found reducing the complexity by decom-

posing the analysis problem into small fragments 

each one of them feasible to solve. 
Knowing all the difficulties in proof of cor-

rectness problems dealing only with a single, 

fault-free instance of the system under evalua-
tion, an exhaustive formal analysis of all the po-

tential faulty instances of the system seems to be 

hopeless.    
 

 

1.2 Abstractions in modelling  

 

A recurring motive in the related research is the 
search for good abstractions which are faithful 

enough to deliver practically meaningful results 

but fit into the computational complexity limita-
tions of formal methods.  

A motivating example is provided by one of 

the fundamental theorems in automata theory on 
the equivalent states. As it is well known, the 

checking of an entire equivalence class (contain-

ing a finite or even infinite number of states) can 
be reduced to the examination of the behaviour 

of the class leader, a single element representing 

the entire class. The use of a similarly powerful 
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abstraction technique, qualitative modelling 
(Saidi, 2000) is the core idea in our paper.  

Practical engineering and everyday’s think-

ing uses frequently qualitative abstractions in 
reasoning about operations of a system.  

For instance, the formulation of the simple 

statement “If a car drives faster, than the speed 
limit, a radar control can take an expensive pic-

ture”   already uses this technique in an intuitive 

way. The main characteristic of the abstraction 
technique in the background is that all values be-

longing to a domain showing up a similar behav-

iour (the entire speed interval above the speed 
limit) are aggregated into a single representative 

state.  
Naturally, this symmetry is violated if taking 

account the impact of breaking (for instance, af-

ter detecting a radar trap). In such a case, either 
the domain has to be splitted into two subdo-

mains (one representing the case, if the speed can 

be reduced enough to avoid the fine and the other 
one, if not anymore) or a non-deterministic 

model has to be created stating that after braking 

we can potentially avoid the fine or not.  
Note that this abstraction corresponds to a 

complete uniformization of the behaviour of all 

the concrete states in the particular domain by al-
lowing in the abstract model a behavior for all 

the elements in a domain, what at least one ele-

ment can do.  

This permissive over-approximation1 covers 

all the potential behaviours of the system guaran-

teeing that no important case will be neglected. 
On the other hand, over-approximation may in-

troduce spurious solutions.  

This way, the abstract system leads to a 
semi-decision. If a check over the abstract model 

delivers a negative result indicating that no ex-

ecution having some target property exists, then 
this is a proof of non-existence of such a run in 

the concrete model. If an example is found, fur-

ther checks are needed over a refined abstract or 
the concrete model to decide, where it is a spu-

rious solution or a true example.    

In general, abstract models generated by 
qualitative abstraction out of the full (concrete) 

model of the system represent the modes of op-

erations inducing qualitatively different behav-
iours by a few values marking these operation 

                                                           
1
 allowing for instance in the abstract model, that brak-

ing at an extremely high speed may slow down the car 

below the speed limit, despite the fact, that the detailed 

model  indicates clearly, that this is not the case 

domains and provide an upper approximation of 
the potential behaviours of the system.  

Semi-decision techniques in safety analysis 

means, that if no dangerous situation is identified 
over the abstract model, then this can be taken as 

a proof of safety. Counterexamples need further 

evaluation. 
The drastic aggregation of domains into sin-

gle states avoids the traditional computational 

complexity problems originating in the over-
detailed representations in full models at a price 

of introducing potentially spurious solutions.  

 

 

1.3 Abstractions in dependability analysis  

 

The principle of qualitative abstraction can be 

used in fault impact modelling. The basic model 
examines here the fault-free and a faulty model 

simultaneously in a similar form, as traditional 

gate level automated test pattern generation does 
it since more than four decades.  

Qualitative abstractions in fault impact 

analysis describe the information flow in a po-
tentially faulty system only at the level of resolu-

tion of fault/error/failure modes.  

This way only so much is kept as data repre-
sentation in modelling fault induced safety cases, 

whether the individual elements and signals are 

good or erroneous (or what kind of error mode is 

present) instead of using their concrete values 

necessitating the handling of huge state spaces.  

The underlying core engineering heuristics 
is that errors of a similar order of magnitude (be-

longing to the domain of a particular error mode) 

in a physical system typically cause similar im-
pacts, accordingly operation domains corre-

sponding to the individual error modes can be 

aggregated into a single state representing the 
euchre domain.  

Note, that the selection of fault/error/failure 

modes is a free design parameter in modelling, 
thus the dependability analyst can choose them 

for instance according to the designated diagnos-

tic resolution. 
Obviously, such a reduction of model com-

plexity (typically of many orders of magnitude) 

has the price of introducing false alarms due to 
abstraction threatening its usability.   

 

 
 

 

 
 



 

2. FORMAL DEPENDABILITY ANALYSIS 

 

The research was focused on three, strongly cor-

related fields (Pataricza, 2006): 
1. Static, syndrome-level dependability as-

sessment models describe the signal flow in a 

system after a temporal compaction mapping 
them to a single attribute of failure mode. The set 

of failure modes contains in the simplest case of 

pass/fail categorization only the values of good 
and faulty, in the case of a more detailed model-

ing the faulty case is refined into multiple values 

according to failure modes. 
The core idea of syndrome level analysis is 

the characterization of the sensitivity of the indi-
vidual components in the system by means of re-

lations between the error manifestations at their 

inputs and outputs. It serves as an early check of 
the appropriateness of the dependability concept, 

thus avoiding extremely costly redesign cycles 

due to violations of dependability requirements. 
2. Another option, dynamic error propaga-

tion analysis deals with the dynamics of propaga-

tion of discrepancies appearing as fault impacts 
in a system both by an intuitive method creating 

the basic models heuristically and by an algo-

rithm automatically deriving them from the func-
tional description of the components. 

3. Finally, the foundations of model trans-

formation generating formal analysis models 

from engineering ones are addressed.  

We assume that the model of the system un-

der evaluation is available as a network of inter-
connected (functional or physical) components 

according the usual practice in modern model-

driven engineering design practice.  
The main objective is to create the system 

model by synthetizing it from composable com-

ponent dependability models, where the compo-
nent models can be individually and separately 

estimated and potentially stored in a library. 

The approach working at the level of smaller 
components allows for using relatively expensive 

methods in the generation process of their re-

spective dependability models. 

 

 

2.1 Fundamental model  

 

Dependability assessment necessitates the mod-

eling of two basic phenomena: the local effects 
of faults at the fault location, and the propagation 

of errors (discrepancies) across the system in or-

der to estimate, which faults may cause a failure, 

i.e. an observable deviation from the specified 
system behaviour.  

The system model M is composed as a struc-

ture of interconnected components {C1 … Cn}. A 
set of anticipated faults Fi is associated to the in-

dividual components Ci. Each component has a 

fault free reference instance Cgood
i and a separate 

faulty mutation Ci is created for each anticipated 

fault mode fj
i describing the behaviour in the 

presence of this particular fault. The actual in-
stance is characterized by a fault state variable fi. 

The notion of error refers to impacts of 

faults observable as a discrepancy in the state of 
the actual system from that in the reference sys-

tem. Accordingly, the analysis of error propaga-
tion necessitates the tracing of information flow 

in two concrete models: in the reference M0 = 

(Sr, Sr
I , nextr) and the actual Ma = (Sa, Sa

I , nexta) 
characterized by their state spaces, initial states 

and state transition relations. Composite states 

are defined as the value pairs at the correspond-
ing nodes in the reference and actual models. 

 

 

2.2 Spatial compaction 
 

Mutually exclusive error predicates ε0…εe 
arbitrarily chosen by the designer completely 

partition the set of composite states into disjoint 

subsets and map them to the set D" = {δ0…δe} of 

error modes. Error modes are a spatial abstrac-

tion of the concrete value pairs appearing at the 

corresponding nodes.  
The simplest classification reflects only the 

match and mismatch of the states in a composite 

state by taking εgood as the “=” relation and εfaulty 
as “≠”. It partitions errors into the error modes of 

D={good, faulty} and neglects the particular type 

of the deviance (left in Fig. 1). More fine granu-
lar models differentiate between error modes by 

separating the class of faulty into disjoint sub-

classes, like differentiating minor and major de-
viances and out of range values (right in Figure 

1). 

Naturally, more complex error mode repre-
sentation may introduce values depending on the 

reference and actual states as well in addition to 

the deviance itself.  
The formulation of error predicates is an im-

portant instrument to reflect the actual depend-

ability objective. For instance, the integrity of 
data is the main aspect to be reflected by these 

predicates in reliability analysis; however, a cor-

rect data content published in a wrong way is an 
error in security analysis. 
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Fig.1. Error mode refinement 

 

 

2.3 Dynamic model 
 
Abstract dynamic error propagation analysis re-

lies on a model of the dynamics of the target sys-

tem (internal operation sequences in the compo-
nents, their mutual interaction and invocation) in 

order to incorporate the activation sequences into 

the analysis.  
The introduction of error modes as main rep-

resentation facilitates the creation of a simple 
automaton describing the impacts of errors ap-

pearing at inputs of the individual components2.  

An input error may result in an error on the 
output of the corresponding component (error 

propagation), cause a discrepancy in the states in 

the reference and actual models (latent error po-
tentially manifested later as a control flow distor-

tion), or both. Another option is error absorption 

(e.g. a single input error of a TMR component).  
This dynamic qualitative error propagation 

modelling automaton (Figure 2.) uses the error 

modes as input-output values to characterize the 
behaviour of the composite model.  An error se-

quence [δ0→…→δm> is a temporal sequence of 

discrepancies represented by their respective er-

ror modes. 

                                                           
2 The modeling of the impacts of local faults in the components 

and the propagation of an error through a faulty component in a 

network containing groups follow exactly the same procedure 

with a slightly more complex model containing a good and a 

faulty instance in the composite model.  

 
Fig. 2. Dynamic error propagation model 

 
The principle of construction of the abstract 

automaton is a special form of predicate abstrac-

tion. A state transition will be included into the 
abstract state automaton from the actual compos-

ite state to a given successor state upon an input 

error vector and generating an output error vec-
tor, if there exists at least one arbitrary combina-

tion of input and output vectors, and actual and 

next states in the concrete model corresponding 
to it. This simplest form of model construction 

necessitates a satisfiability check for each com-

bination of I/O vector and actualities states. 
This model represents the control flow in the 

composite model in its full extent, but the repre-

sentation of data dependencies is reduced to that 
on syndrome values thus aggregating entire op-

erational data domains into a single syndrome 

value.  
The abstract automaton can answer for in-

stance, the typical question asking the impact of 

the first occurrence of a “minor” error. Here, the 
initial states in both the actual and reference con-

crete models are identical and the question is 

“Over an arbitrary pair of input values differing 
only slightly at the corresponding inputs of the 

actual and reference models what are their suc-

cessor states and what kind of deviance may ap-
pear on their outputs?”.  

Such a question may help to conclude 

whether minor deviances can cause divergences 
in the control flow executions (different runs) of 

the actual and reference systems (e.g. noise sen-

sitivity of the control algorithm). Similarly, it can 

be checked whether such an input of a minor de-

viance may be amplified to a major one on the 

outputs. Both answers are approximate in the 
sense that they indicate only the potential occur-

rence of such a safety problem.  

As the creation of an automaton working 
over the few values from the error modes as in-

put and output alphabets needs an exhaustive 

checking of all value pairs constrained by the er-
ror mode for all the reachable state pairs. This 

way, this is one of the core elements in the algo-



 

rithms consuming the most computational pow-
ers; however, for simple components this can be 

done even by hand.  

One important characteristics of the dynamic 
modeling approach sketched above is that it uses 

only very basic constraints on the modeling lan-

guage as the concepts used are confined to dis-
crete state space and time, non-deterministic fi-

nite automata. This way, such popular modeling 

approaches, like dataflow, sequence or state chart 
diagrams can be extracted such a way that the 

abstract model uses the same modeling paradigm 

(Majzik et. al., 2002; Majzik et. al., 2003; 
Pataricza, 2003). 

The system model is created by means of 
composing the individual component models to a 

network. Thanks to the drastic reduction in data 

representation the computational complexity of 
checking this model lies in between that related 

to the non-interpreted model (neglecting data 

values by decolouring data items) and proof of 
correctness models which are rich in data but 

treat only a single, good system. All the algo-

rithms used for checking the particular language 
used in describing the original model can be re-

used without any alteration to check dependabil-

ity attributes.  
The advantage of the spatial compaction is 

that the abstract automaton has to operate over 

the very few discrete values corresponding to the 

error modes even in the case if the system is ana-

log or hybrid. The complexity of the state spaces 

corresponds to the Cartesian product of the state 
spaces in the reference and actual models.  

 

 

2.4 Temporal compaction 
 

The spatial compaction method reaches huge 
complexity reduction by aggregating large data 

domains into a few of qualitative values. Another 

option for further reduction of computational 
complexity is along the temporal dimension by 

compacting arbitrarily long error sequences into 

a single value (syndrome). 
 The engineering practice frequently uses 

such simplified views of long sequences. For in-

stance, software errors are frequently character-
ized at the level of resolution of severity class 

only according to the most severe error occurring 

in them, independently of the value and the tem-
poral position of the error occurrence.  

Similarly, a typical question related to fault-

tolerant systems is whether a system is self-
stabilizing, thus whether it always takes a proper 

compensation action after an observable error at-
tenuating its impact.   

The most convenient way to express tempo-

ral attributes is by using temporal logic, a formal 
logic widely used to specify, and reasoning 

about, logic propositions qualified in terms of 

time. 
A complete and mutually exclusive set of 

predicates {ϑ0…ϑt} formulated as temporal logic 
expressions performs a temporal abstraction by 
partitioning the set of error sequences into dis-
joint subsets and compacting each of them into a 
single element from the set of syndrome values Y 
= {y0…yt}. Syndromes observable by the system 
user will be referred to as failure modes.  

Once again, the selection of the syndrome 

value set is a free design choice offered to the 
dependability analyst according to the purpose of 

the analysis, similarly to error modes.  

For instance, a set of syndrome values in 
fault impact analysis may contain the values of 

{good, minor failure, major failure} ordered ac-
cording to the severity of the fault impacts.  

Similarly, when examining the appropriate-

ness of the fault compensation mechanisms, the 
values of {good, attenuating, amplifying, oscil-

lating etc.} can be introduced.  

Syndrome level modeling constitutes the 
topmost level of abstraction in error propagation 

modeling. The principle of creating syndrome 

level component models is similar to the estima-
tion of dynamic ones.  

A component syndrome model describes the 

sensitivity of its outputs to failure modes appear-
ing on its inputs in the form of a set of input-

output syndrome relations.  

The estimation of a particular syndrome re-
lation needs the checking for each input-output 

value vector combination whether there exist 

such error sequences which fulfil the candidate 
relation. This necessitates for each value combi-

nation a model checking run. The resulting com-

putational complexity confines the maximum 

complexity of the component models to a mod-

erate level.  

 
 

2.5 Static model 

 
Syndrome level static models (Figure 3.) com-

posed of interconnected failure relation models 

of components use a high level of abstraction 
both in the spatial and temporal dimensions rep-

resenting their mutual interdependency. 

 



 

 
 
Fig. 3. Syndrome-level static network 

 

Such models are composed as a network of 
relations and the problems described by such 

networks are referred to as Constraint Satisfac-

tion Problems (CSP). CSPs are networks of vari-
ables interconnected by a set of relations called 

constraints (Tsang, 1993).  

A CSP is solved, if a value assignment has 
been found for all variables, such that all the re-

lations are satisfied. Constraints have several in-

teresting properties (Barták, 2001); like a con-
straint does not need a unique specification of all 

the values of its variables thus they may specify 

partial information which can be exploited on-
the-fly diagnosis procedures.  

Constraints are non-directional, declarative 

(they specify what relationship must hold with-
out specifying a computational procedure to en-

force that relationship), additive (the conjunction 

of constraints is effective independently of the 
order of imposition of constraints), and composi-

tional, as hierarchical refinement is supported.  

The use of relations in CSPs provides a 
proper support for handling nondeterministic ab-

stractions of complex systems. 

Such models share a uniform structure, thus 
joint algorithms can be used to solve them. In all 

of our technology experiment we simply use 

Prolog as modeling language for constraint defi-
nition and solution.  

The main advantage of the static analysis is 

that it delivers valuable results in a very fast way 
thanks to the simplicity of the solution. In par-

ticular, for safety analysis one of the main advan-

tages is that the typical architectural redundancy 
pattern, like n-out-of-m redundancy structure can 

be easily modelled in a general form. Moreover, 
as CSP relies on the algebra of relation, it sup-

ports several refinement techniques shortly de-

scribed later in the paper.  
A hierarchical analysis along structural re-

finement can prove the appropriateness of built-

in fault-tolerance of safety critical functionalities 
in the case of structural redundancy at the top-

most level of abstraction without necessitating a 
detailed model of the individual functionalities. 

Static, syndrome level dependability model 

based analysis delivers frequently overly pessi-
mistic results by taking all the topologically fea-

sible error propagation paths as potentially active 

independently, whether an actual scenario uses 
them at all. 

 

 

3. MODEL REFINEMENT AND 

AGGREGATION 

 
As mentioned before, the model analysis process 

is a trade-off between modeling detail (and 
avoidance of false alarms) and computational 

complexity needed for the analysis. Figure 4. 

summarizes the main possibilities for model ab-
straction and refinement.  

Two strategies can be used for abstraction 

(creating more compact and easier to solve mod-
els at a price of an increased number of false 

alarms originating in spurious solutions) and re-

finement (introducing more details and faithful-
ness): the first one is model refinement within a 

single type of model, while the second one con-

nects different types of models.  
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Fig. 4. Abstraction/refinement hierarchy 

 
 

3.1 Refinements within of a model class 
 

Model abstraction and refinement are well 

known concepts in the engineering design of 

computing systems additionally to their mathe-

matical use in the formal analysis for V&V pur-

poses (Clarke et. al., 1994). 

The basic principle of design processes 
guaranteeing correctness is the restriction of the 

set of allowed model enrichment operations to 

such ones, which constitute a correct and com-
plete refinement in the terms of mathematics. 

Both dynamic and static error propagation 

models can be created in two basic ways depend-
ing whether we start from a coarse or a fine 

granular model: 



 

Heuristic top-down modeling serves for an 
early assessment of dependability attributes in 

the initial phases of system design. It may start 

for instance from a non-interpreted model of the 
control flow. The starting point is a skeletal form 

of the characterization of the dynamics substitut-

ing data dependencies with nondeterministic 
choices.  This model will be enriched with de-

pendencies on the syndrome values interpreting 

this way the dependence of the dynamic behav-
iour of the system on errors and failure modes of 

components. This method is intuitive, as it relies 

on an expert-made forecasting of the sensitivity 
of the individual components to input errors. 

Abstraction based modeling derives the dy-
namic error propagation models from the func-

tional description of the components. Obviously, 

this model necessitates a more detailed specifica-
tion of the system than the sketch-like heuristic 

methodology, but it delivers an accurate estima-

tion of error propagation effects and simultane-
ously assures the consistency between the func-

tional and error propagation models. 

 
 

3.2 Refinements in the design workflow 

 
The primary use of these two models is in differ-

ent phases of the design workflow, but their 

scope may cover either only the behaviour of the 

system or it can be extended to cover both the ar-

chitecture of application and its deployment to 

resources (Pataricza, 2002). 
Incremental top-down design strategies 

gradually enrich an initial abstract glass-box 

model of the system by elaborating either more 
and more detailed specification of the compo-

nents (domain refinement) or the model structure 

(structure refinement) or the resolution of the 
representation of its temporal behaviour (state re-

finement). The incremental design flow is com-

posed as the consecutive application of these 
elementary operations. 

Domain refinement uses a finer resolution in 

the error/syndrome modeling or introduces a 
more refined separation of cases into the control 

flow. Input-output refinement introduces sub-

types to error modes/syndromes (like in Fig.1.).   
Control flow refinement decomposes the 

state space of a component by splitting an inter-

nal state into multiple ones and simultaneously 
modifying. The set of state transition relations is 

in order to assure the correspondence between 

the states in the original and refined models.  

Structure refinement splits a single compo-
nent into a sub-network composed of multiple 

components, while the interfaces and the state 

space remain unaltered. Changes of the network 
structure effect only the ”inner structure” of the 

refined node, but the other nodes as well as the 

original interconnections remain unaltered. 
State refinement increases the temporal reso-

lution of the model by splitting state transitions 

into a sequence of such transitions. For instance, 
an initial coarse model of an operation describes 

only the arrival of the request to the correspond-

ing unit and the response given by it while a 
more fine granular one includes the internal con-

trol flow of the operation, as well.  
There is a difference how a model will be 

constructed depending whether dependability 

analysis is executed concurrently with the design 
workflow or it is only an a posteriori activity. 

In the first case the creation of the depend-

ability model follows a step by step refinement 
synchronized with the design flow of the system.  

It starts from a non-interpreted model of the 

target system representing data by their pres-
ence/absence at the different nodes of the system. 

The intuitive method introduces error modes by a 

gradual refinement into the non-interpreted 
model in order to get a description of the error 

propagation properties of the actual component 

instance. The subsequent refinements of the de-

pendability model will be executed in synchrony 

with the functional design workflow.   

The main drawback of the intuitive method 
is, that it is error prone, especially, if an input er-

ror may cause latent errors inside of a component 

(in its storage elements) postponing the manifes-
tation of the error by several steps of operation. 

An alternate way is given if at each individ-

ual level the functional specification is given in 
which case the dynamic and static models can be 

derived from the functional description by using 

the algorithms sketched above.  
Frequently dependability (for instance, 

safety evaluation) is a separate activity following 

the functional design. According to our practice, 
the easiest way to generate good quality models 

starts from the most detailed models (simple 

components) and creates abstract models by 
automated aggregation.  

For instance, the syndrome level static error 

sensitivity model of a sub-network performing a 
particular functionality will be generated by 

means of estimating of all the solutions of the 

corresponding constraint network and omitting 



 

from these solution relations all the variables in-
visible as interface signals.  

The basic definition of the temporal compac-

tion described in Sect. 2.4 serves as a compliance 
checking criteria between dynamic and static 

models.  

 
 

3.3 Run-time refinements 
 
Counter example is given model refinement is 

one of the most fundamental techniques in model 

analysis.  
The core idea here is that a specific refine-

ment is performed after finding an example vio-
lating the required properties. This refinement 

can be performed locally around the location or 

temporal interval in which the problematic case 
was detected. Here the abstract counter example 

is used as a boundary constraint in the finer 

granular model.  
All the refinement possibilities illustrated in 

Fig.4. can be included into the model checking 

process in order to support the elimination of 
spurious solutions originating in the over-

abstraction characteristic to the more abstract 

models (Chang et. al., 1994).  
 

 

4. CONCLUDING REMARKS 

 

A novel approach was presented in the paper in-

troducing spatial and temporal compaction for 
deriving formal models for error propagation 

analysis. Its main advantage is the reusability of 

existing proof of correctness methods for analys-
ing dependability attributes in the case of pres-

ence of errors.  

Static analysis can be performed by means 
of constraint satisfaction programming support-

ing even on-the-fly diagnostics processing partial 

information available at error notifications.  
The diagnostic image can be further refined 

by applying the costly but more accurate dy-

namic analysis.  
Both methods are characterized by the use of 

over-abstraction of the system thus they guaran-

tee that no critical safety situation will be over-
looked.  

This way, they fulfil the expectations against 

a worst case analysis. The price of the simplified 
analysis is that depending on the level of simpli-

fication they may generate false alarms (spurious 

solutions) to be eliminated by a sub-sequent de-
tailed analysis.  

The complete toolchain using VIATRA 
(Varró, 2003) as transformation engine between 

a UML dialect for the engineering models of 

safety-critical embedded systems and depend-
ability analysis models is currently under elabo-

ration in the framework of the GENESYS EU-

FP7 research project.  
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