
1. INTRODUCTION

The use of formal methods belongs more and
more to the core technologies in the proof of cor-

rectness of IT systems, including validation and

verification (V&V) but their use in dependability
assessment is quite limited. A question of the

type ”Does the system have a potential deadlock

due to a design fault?” belongs to the standard
problems addressed by formal methods embed-

ded in the design flow. However, very little has

been done in the context of system design for
dependability to answer questions, like ”May a

faulty component result in a potential deadlock
blocking some vital system functionality?”.

The paper presents an approach facilitating

the use of formal methods in dependability
analysis despite of the modeling and analysis

complexity originating in the large number of

faulty cases.

1.1 Research challenges

The main advantage of formal methods is, their

exhaustiveness, as they examine the system thor-
oughly by checking all the potential cases. A ma-

jor obstacle in their practical use for V&V of en-

gineering designs is the strong limitation on
model complexity for practical feasibility of the

underlying computations, thus either the faithful-

ness of the model has to be sacrificed by a high

level of abstraction, or a proper workaround has
to be found reducing the complexity by decom-

posing the analysis problem into small fragments

each one of them feasible to solve.
Knowing all the difficulties in proof of cor-

rectness problems dealing only with a single,

fault-free instance of the system under evalua-
tion, an exhaustive formal analysis of all the po-

tential faulty instances of the system seems to be

hopeless.

1.2 Abstractions in modelling

A recurring motive in the related research is the
search for good abstractions which are faithful

enough to deliver practically meaningful results

but fit into the computational complexity limita-
tions of formal methods.

A motivating example is provided by one of

the fundamental theorems in automata theory on
the equivalent states. As it is well known, the

checking of an entire equivalence class (contain-

ing a finite or even infinite number of states) can
be reduced to the examination of the behaviour

of the class leader, a single element representing

the entire class. The use of a similarly powerful

SYSTEMATIC GENERATION OF DEPENDABILITY CASES FROM

FUNCTIONAL MODELS

András Pataricza
Technical University of Budapest, Department of Measurement and Information Systems

Address: Magyar tudósok krt. 2., Budapest, Hungary, H-1117

Phone: (+36-1) 463-3595, Fax: (+36-1) 463-2667, E-mail: pataric@mit.bme.hu

Abstract: A variety of applications relies on rough granular redundancy assuring safety by the

architectural principle, but integrated solutions of a lower level of redundancy necessitate a detailed

check in order to guarantee a high-level of safety. While formal methods are widely used in proofs of

correctness of safety critical applications, little has been done to use them for checking the compliance

to safety requirements in the case if some component fails. The paper presents a novel approach based
on qualitative modeling at the level of fault/error/failure modes facilitating the reuse of existing formal

methods for validating and verifying dependability including safety properties.

Keywords: fault impact modeling, formal methods, model-based engineering.

abstraction technique, qualitative modelling
(Saidi, 2000) is the core idea in our paper.

Practical engineering and everyday’s think-

ing uses frequently qualitative abstractions in
reasoning about operations of a system.

For instance, the formulation of the simple

statement “If a car drives faster, than the speed
limit, a radar control can take an expensive pic-

ture” already uses this technique in an intuitive

way. The main characteristic of the abstraction
technique in the background is that all values be-

longing to a domain showing up a similar behav-

iour (the entire speed interval above the speed
limit) are aggregated into a single representative

state.
Naturally, this symmetry is violated if taking

account the impact of breaking (for instance, af-

ter detecting a radar trap). In such a case, either
the domain has to be splitted into two subdo-

mains (one representing the case, if the speed can

be reduced enough to avoid the fine and the other
one, if not anymore) or a non-deterministic

model has to be created stating that after braking

we can potentially avoid the fine or not.
Note that this abstraction corresponds to a

complete uniformization of the behaviour of all

the concrete states in the particular domain by al-
lowing in the abstract model a behavior for all

the elements in a domain, what at least one ele-

ment can do.

This permissive over-approximation1 covers

all the potential behaviours of the system guaran-

teeing that no important case will be neglected.
On the other hand, over-approximation may in-

troduce spurious solutions.

This way, the abstract system leads to a
semi-decision. If a check over the abstract model

delivers a negative result indicating that no ex-

ecution having some target property exists, then
this is a proof of non-existence of such a run in

the concrete model. If an example is found, fur-

ther checks are needed over a refined abstract or
the concrete model to decide, where it is a spu-

rious solution or a true example.

In general, abstract models generated by
qualitative abstraction out of the full (concrete)

model of the system represent the modes of op-

erations inducing qualitatively different behav-
iours by a few values marking these operation

1
 allowing for instance in the abstract model, that brak-

ing at an extremely high speed may slow down the car

below the speed limit, despite the fact, that the detailed

model indicates clearly, that this is not the case

domains and provide an upper approximation of
the potential behaviours of the system.

Semi-decision techniques in safety analysis

means, that if no dangerous situation is identified
over the abstract model, then this can be taken as

a proof of safety. Counterexamples need further

evaluation.
The drastic aggregation of domains into sin-

gle states avoids the traditional computational

complexity problems originating in the over-
detailed representations in full models at a price

of introducing potentially spurious solutions.

1.3 Abstractions in dependability analysis

The principle of qualitative abstraction can be

used in fault impact modelling. The basic model
examines here the fault-free and a faulty model

simultaneously in a similar form, as traditional

gate level automated test pattern generation does
it since more than four decades.

Qualitative abstractions in fault impact

analysis describe the information flow in a po-
tentially faulty system only at the level of resolu-

tion of fault/error/failure modes.

This way only so much is kept as data repre-
sentation in modelling fault induced safety cases,

whether the individual elements and signals are

good or erroneous (or what kind of error mode is

present) instead of using their concrete values

necessitating the handling of huge state spaces.

The underlying core engineering heuristics
is that errors of a similar order of magnitude (be-

longing to the domain of a particular error mode)

in a physical system typically cause similar im-
pacts, accordingly operation domains corre-

sponding to the individual error modes can be

aggregated into a single state representing the
euchre domain.

Note, that the selection of fault/error/failure

modes is a free design parameter in modelling,
thus the dependability analyst can choose them

for instance according to the designated diagnos-

tic resolution.
Obviously, such a reduction of model com-

plexity (typically of many orders of magnitude)

has the price of introducing false alarms due to
abstraction threatening its usability.

2. FORMAL DEPENDABILITY ANALYSIS

The research was focused on three, strongly cor-

related fields (Pataricza, 2006):
1. Static, syndrome-level dependability as-

sessment models describe the signal flow in a

system after a temporal compaction mapping
them to a single attribute of failure mode. The set

of failure modes contains in the simplest case of

pass/fail categorization only the values of good
and faulty, in the case of a more detailed model-

ing the faulty case is refined into multiple values

according to failure modes.
The core idea of syndrome level analysis is

the characterization of the sensitivity of the indi-
vidual components in the system by means of re-

lations between the error manifestations at their

inputs and outputs. It serves as an early check of
the appropriateness of the dependability concept,

thus avoiding extremely costly redesign cycles

due to violations of dependability requirements.
2. Another option, dynamic error propaga-

tion analysis deals with the dynamics of propaga-

tion of discrepancies appearing as fault impacts
in a system both by an intuitive method creating

the basic models heuristically and by an algo-

rithm automatically deriving them from the func-
tional description of the components.

3. Finally, the foundations of model trans-

formation generating formal analysis models

from engineering ones are addressed.

We assume that the model of the system un-

der evaluation is available as a network of inter-
connected (functional or physical) components

according the usual practice in modern model-

driven engineering design practice.
The main objective is to create the system

model by synthetizing it from composable com-

ponent dependability models, where the compo-
nent models can be individually and separately

estimated and potentially stored in a library.

The approach working at the level of smaller
components allows for using relatively expensive

methods in the generation process of their re-

spective dependability models.

2.1 Fundamental model

Dependability assessment necessitates the mod-

eling of two basic phenomena: the local effects
of faults at the fault location, and the propagation

of errors (discrepancies) across the system in or-

der to estimate, which faults may cause a failure,

i.e. an observable deviation from the specified
system behaviour.

The system model M is composed as a struc-

ture of interconnected components {C1 … Cn}. A
set of anticipated faults Fi is associated to the in-

dividual components Ci. Each component has a

fault free reference instance Cgood
i and a separate

faulty mutation Ci is created for each anticipated

fault mode fj
i describing the behaviour in the

presence of this particular fault. The actual in-
stance is characterized by a fault state variable fi.

The notion of error refers to impacts of

faults observable as a discrepancy in the state of
the actual system from that in the reference sys-

tem. Accordingly, the analysis of error propaga-
tion necessitates the tracing of information flow

in two concrete models: in the reference M0 =

(Sr, Sr
I , nextr) and the actual Ma = (Sa, Sa

I , nexta)
characterized by their state spaces, initial states

and state transition relations. Composite states

are defined as the value pairs at the correspond-
ing nodes in the reference and actual models.

2.2 Spatial compaction

Mutually exclusive error predicates ε0…εe
arbitrarily chosen by the designer completely

partition the set of composite states into disjoint

subsets and map them to the set D" = {δ0…δe} of

error modes. Error modes are a spatial abstrac-

tion of the concrete value pairs appearing at the

corresponding nodes.
The simplest classification reflects only the

match and mismatch of the states in a composite

state by taking εgood as the “=” relation and εfaulty
as “≠”. It partitions errors into the error modes of

D={good, faulty} and neglects the particular type

of the deviance (left in Fig. 1). More fine granu-
lar models differentiate between error modes by

separating the class of faulty into disjoint sub-

classes, like differentiating minor and major de-
viances and out of range values (right in Figure

1).

Naturally, more complex error mode repre-
sentation may introduce values depending on the

reference and actual states as well in addition to

the deviance itself.
The formulation of error predicates is an im-

portant instrument to reflect the actual depend-

ability objective. For instance, the integrity of
data is the main aspect to be reflected by these

predicates in reliability analysis; however, a cor-

rect data content published in a wrong way is an
error in security analysis.

Faulty

A
c
tu

a
l

Reference

Faulty

G
oo

d

Major

deviance
A

c
tu

a
l

Reference

Out of range

G
oo

d

M
in
or

 d
ev

ia
nc

e
Major

deviance

M
in
or

 d
ev

ia
nc

e

Fig.1. Error mode refinement

2.3 Dynamic model

Abstract dynamic error propagation analysis re-

lies on a model of the dynamics of the target sys-

tem (internal operation sequences in the compo-
nents, their mutual interaction and invocation) in

order to incorporate the activation sequences into

the analysis.
The introduction of error modes as main rep-

resentation facilitates the creation of a simple
automaton describing the impacts of errors ap-

pearing at inputs of the individual components2.

An input error may result in an error on the
output of the corresponding component (error

propagation), cause a discrepancy in the states in

the reference and actual models (latent error po-
tentially manifested later as a control flow distor-

tion), or both. Another option is error absorption

(e.g. a single input error of a TMR component).
This dynamic qualitative error propagation

modelling automaton (Figure 2.) uses the error

modes as input-output values to characterize the
behaviour of the composite model. An error se-

quence [δ0→…→δm> is a temporal sequence of

discrepancies represented by their respective er-

ror modes.

2 The modeling of the impacts of local faults in the components

and the propagation of an error through a faulty component in a

network containing groups follow exactly the same procedure

with a slightly more complex model containing a good and a

faulty instance in the composite model.

Fig. 2. Dynamic error propagation model

The principle of construction of the abstract

automaton is a special form of predicate abstrac-

tion. A state transition will be included into the
abstract state automaton from the actual compos-

ite state to a given successor state upon an input

error vector and generating an output error vec-
tor, if there exists at least one arbitrary combina-

tion of input and output vectors, and actual and

next states in the concrete model corresponding
to it. This simplest form of model construction

necessitates a satisfiability check for each com-

bination of I/O vector and actualities states.
This model represents the control flow in the

composite model in its full extent, but the repre-

sentation of data dependencies is reduced to that
on syndrome values thus aggregating entire op-

erational data domains into a single syndrome

value.
The abstract automaton can answer for in-

stance, the typical question asking the impact of

the first occurrence of a “minor” error. Here, the
initial states in both the actual and reference con-

crete models are identical and the question is

“Over an arbitrary pair of input values differing
only slightly at the corresponding inputs of the

actual and reference models what are their suc-

cessor states and what kind of deviance may ap-
pear on their outputs?”.

Such a question may help to conclude

whether minor deviances can cause divergences
in the control flow executions (different runs) of

the actual and reference systems (e.g. noise sen-

sitivity of the control algorithm). Similarly, it can

be checked whether such an input of a minor de-

viance may be amplified to a major one on the

outputs. Both answers are approximate in the
sense that they indicate only the potential occur-

rence of such a safety problem.

As the creation of an automaton working
over the few values from the error modes as in-

put and output alphabets needs an exhaustive

checking of all value pairs constrained by the er-
ror mode for all the reachable state pairs. This

way, this is one of the core elements in the algo-

rithms consuming the most computational pow-
ers; however, for simple components this can be

done even by hand.

One important characteristics of the dynamic
modeling approach sketched above is that it uses

only very basic constraints on the modeling lan-

guage as the concepts used are confined to dis-
crete state space and time, non-deterministic fi-

nite automata. This way, such popular modeling

approaches, like dataflow, sequence or state chart
diagrams can be extracted such a way that the

abstract model uses the same modeling paradigm

(Majzik et. al., 2002; Majzik et. al., 2003;
Pataricza, 2003).

The system model is created by means of
composing the individual component models to a

network. Thanks to the drastic reduction in data

representation the computational complexity of
checking this model lies in between that related

to the non-interpreted model (neglecting data

values by decolouring data items) and proof of
correctness models which are rich in data but

treat only a single, good system. All the algo-

rithms used for checking the particular language
used in describing the original model can be re-

used without any alteration to check dependabil-

ity attributes.
The advantage of the spatial compaction is

that the abstract automaton has to operate over

the very few discrete values corresponding to the

error modes even in the case if the system is ana-

log or hybrid. The complexity of the state spaces

corresponds to the Cartesian product of the state
spaces in the reference and actual models.

2.4 Temporal compaction

The spatial compaction method reaches huge
complexity reduction by aggregating large data

domains into a few of qualitative values. Another

option for further reduction of computational
complexity is along the temporal dimension by

compacting arbitrarily long error sequences into

a single value (syndrome).
 The engineering practice frequently uses

such simplified views of long sequences. For in-

stance, software errors are frequently character-
ized at the level of resolution of severity class

only according to the most severe error occurring

in them, independently of the value and the tem-
poral position of the error occurrence.

Similarly, a typical question related to fault-

tolerant systems is whether a system is self-
stabilizing, thus whether it always takes a proper

compensation action after an observable error at-
tenuating its impact.

The most convenient way to express tempo-

ral attributes is by using temporal logic, a formal
logic widely used to specify, and reasoning

about, logic propositions qualified in terms of

time.
A complete and mutually exclusive set of

predicates {ϑ0…ϑt} formulated as temporal logic
expressions performs a temporal abstraction by
partitioning the set of error sequences into dis-
joint subsets and compacting each of them into a
single element from the set of syndrome values Y
= {y0…yt}. Syndromes observable by the system
user will be referred to as failure modes.

Once again, the selection of the syndrome

value set is a free design choice offered to the
dependability analyst according to the purpose of

the analysis, similarly to error modes.

For instance, a set of syndrome values in
fault impact analysis may contain the values of

{good, minor failure, major failure} ordered ac-
cording to the severity of the fault impacts.

Similarly, when examining the appropriate-

ness of the fault compensation mechanisms, the
values of {good, attenuating, amplifying, oscil-

lating etc.} can be introduced.

Syndrome level modeling constitutes the
topmost level of abstraction in error propagation

modeling. The principle of creating syndrome

level component models is similar to the estima-
tion of dynamic ones.

A component syndrome model describes the

sensitivity of its outputs to failure modes appear-
ing on its inputs in the form of a set of input-

output syndrome relations.

The estimation of a particular syndrome re-
lation needs the checking for each input-output

value vector combination whether there exist

such error sequences which fulfil the candidate
relation. This necessitates for each value combi-

nation a model checking run. The resulting com-

putational complexity confines the maximum

complexity of the component models to a mod-

erate level.

2.5 Static model

Syndrome level static models (Figure 3.) com-

posed of interconnected failure relation models

of components use a high level of abstraction
both in the spatial and temporal dimensions rep-

resenting their mutual interdependency.

Fig. 3. Syndrome-level static network

Such models are composed as a network of
relations and the problems described by such

networks are referred to as Constraint Satisfac-

tion Problems (CSP). CSPs are networks of vari-
ables interconnected by a set of relations called

constraints (Tsang, 1993).

A CSP is solved, if a value assignment has
been found for all variables, such that all the re-

lations are satisfied. Constraints have several in-

teresting properties (Barták, 2001); like a con-
straint does not need a unique specification of all

the values of its variables thus they may specify

partial information which can be exploited on-
the-fly diagnosis procedures.

Constraints are non-directional, declarative

(they specify what relationship must hold with-
out specifying a computational procedure to en-

force that relationship), additive (the conjunction

of constraints is effective independently of the
order of imposition of constraints), and composi-

tional, as hierarchical refinement is supported.

The use of relations in CSPs provides a
proper support for handling nondeterministic ab-

stractions of complex systems.

Such models share a uniform structure, thus
joint algorithms can be used to solve them. In all

of our technology experiment we simply use

Prolog as modeling language for constraint defi-
nition and solution.

The main advantage of the static analysis is

that it delivers valuable results in a very fast way
thanks to the simplicity of the solution. In par-

ticular, for safety analysis one of the main advan-

tages is that the typical architectural redundancy
pattern, like n-out-of-m redundancy structure can

be easily modelled in a general form. Moreover,
as CSP relies on the algebra of relation, it sup-

ports several refinement techniques shortly de-

scribed later in the paper.
A hierarchical analysis along structural re-

finement can prove the appropriateness of built-

in fault-tolerance of safety critical functionalities
in the case of structural redundancy at the top-

most level of abstraction without necessitating a
detailed model of the individual functionalities.

Static, syndrome level dependability model

based analysis delivers frequently overly pessi-
mistic results by taking all the topologically fea-

sible error propagation paths as potentially active

independently, whether an actual scenario uses
them at all.

3. MODEL REFINEMENT AND

AGGREGATION

As mentioned before, the model analysis process

is a trade-off between modeling detail (and
avoidance of false alarms) and computational

complexity needed for the analysis. Figure 4.

summarizes the main possibilities for model ab-
straction and refinement.

Two strategies can be used for abstraction

(creating more compact and easier to solve mod-
els at a price of an increased number of false

alarms originating in spurious solutions) and re-

finement (introducing more details and faithful-
ness): the first one is model refinement within a

single type of model, while the second one con-

nects different types of models.

Concrete

model Dynamic

model

domain

structure

state

refinement

Static

model

domain structure

refinement

spatial

compaction

refinement

temporal

abstraction

refinement

Fig. 4. Abstraction/refinement hierarchy

3.1 Refinements within of a model class

Model abstraction and refinement are well

known concepts in the engineering design of

computing systems additionally to their mathe-

matical use in the formal analysis for V&V pur-

poses (Clarke et. al., 1994).

The basic principle of design processes
guaranteeing correctness is the restriction of the

set of allowed model enrichment operations to

such ones, which constitute a correct and com-
plete refinement in the terms of mathematics.

Both dynamic and static error propagation

models can be created in two basic ways depend-
ing whether we start from a coarse or a fine

granular model:

Heuristic top-down modeling serves for an
early assessment of dependability attributes in

the initial phases of system design. It may start

for instance from a non-interpreted model of the
control flow. The starting point is a skeletal form

of the characterization of the dynamics substitut-

ing data dependencies with nondeterministic
choices. This model will be enriched with de-

pendencies on the syndrome values interpreting

this way the dependence of the dynamic behav-
iour of the system on errors and failure modes of

components. This method is intuitive, as it relies

on an expert-made forecasting of the sensitivity
of the individual components to input errors.

Abstraction based modeling derives the dy-
namic error propagation models from the func-

tional description of the components. Obviously,

this model necessitates a more detailed specifica-
tion of the system than the sketch-like heuristic

methodology, but it delivers an accurate estima-

tion of error propagation effects and simultane-
ously assures the consistency between the func-

tional and error propagation models.

3.2 Refinements in the design workflow

The primary use of these two models is in differ-

ent phases of the design workflow, but their

scope may cover either only the behaviour of the

system or it can be extended to cover both the ar-

chitecture of application and its deployment to

resources (Pataricza, 2002).
Incremental top-down design strategies

gradually enrich an initial abstract glass-box

model of the system by elaborating either more
and more detailed specification of the compo-

nents (domain refinement) or the model structure

(structure refinement) or the resolution of the
representation of its temporal behaviour (state re-

finement). The incremental design flow is com-

posed as the consecutive application of these
elementary operations.

Domain refinement uses a finer resolution in

the error/syndrome modeling or introduces a
more refined separation of cases into the control

flow. Input-output refinement introduces sub-

types to error modes/syndromes (like in Fig.1.).
Control flow refinement decomposes the

state space of a component by splitting an inter-

nal state into multiple ones and simultaneously
modifying. The set of state transition relations is

in order to assure the correspondence between

the states in the original and refined models.

Structure refinement splits a single compo-
nent into a sub-network composed of multiple

components, while the interfaces and the state

space remain unaltered. Changes of the network
structure effect only the ”inner structure” of the

refined node, but the other nodes as well as the

original interconnections remain unaltered.
State refinement increases the temporal reso-

lution of the model by splitting state transitions

into a sequence of such transitions. For instance,
an initial coarse model of an operation describes

only the arrival of the request to the correspond-

ing unit and the response given by it while a
more fine granular one includes the internal con-

trol flow of the operation, as well.
There is a difference how a model will be

constructed depending whether dependability

analysis is executed concurrently with the design
workflow or it is only an a posteriori activity.

In the first case the creation of the depend-

ability model follows a step by step refinement
synchronized with the design flow of the system.

It starts from a non-interpreted model of the

target system representing data by their pres-
ence/absence at the different nodes of the system.

The intuitive method introduces error modes by a

gradual refinement into the non-interpreted
model in order to get a description of the error

propagation properties of the actual component

instance. The subsequent refinements of the de-

pendability model will be executed in synchrony

with the functional design workflow.

The main drawback of the intuitive method
is, that it is error prone, especially, if an input er-

ror may cause latent errors inside of a component

(in its storage elements) postponing the manifes-
tation of the error by several steps of operation.

An alternate way is given if at each individ-

ual level the functional specification is given in
which case the dynamic and static models can be

derived from the functional description by using

the algorithms sketched above.
Frequently dependability (for instance,

safety evaluation) is a separate activity following

the functional design. According to our practice,
the easiest way to generate good quality models

starts from the most detailed models (simple

components) and creates abstract models by
automated aggregation.

For instance, the syndrome level static error

sensitivity model of a sub-network performing a
particular functionality will be generated by

means of estimating of all the solutions of the

corresponding constraint network and omitting

from these solution relations all the variables in-
visible as interface signals.

The basic definition of the temporal compac-

tion described in Sect. 2.4 serves as a compliance
checking criteria between dynamic and static

models.

3.3 Run-time refinements

Counter example is given model refinement is

one of the most fundamental techniques in model

analysis.
The core idea here is that a specific refine-

ment is performed after finding an example vio-
lating the required properties. This refinement

can be performed locally around the location or

temporal interval in which the problematic case
was detected. Here the abstract counter example

is used as a boundary constraint in the finer

granular model.
All the refinement possibilities illustrated in

Fig.4. can be included into the model checking

process in order to support the elimination of
spurious solutions originating in the over-

abstraction characteristic to the more abstract

models (Chang et. al., 1994).

4. CONCLUDING REMARKS

A novel approach was presented in the paper in-

troducing spatial and temporal compaction for
deriving formal models for error propagation

analysis. Its main advantage is the reusability of

existing proof of correctness methods for analys-
ing dependability attributes in the case of pres-

ence of errors.

Static analysis can be performed by means
of constraint satisfaction programming support-

ing even on-the-fly diagnostics processing partial

information available at error notifications.
The diagnostic image can be further refined

by applying the costly but more accurate dy-

namic analysis.
Both methods are characterized by the use of

over-abstraction of the system thus they guaran-

tee that no critical safety situation will be over-
looked.

This way, they fulfil the expectations against

a worst case analysis. The price of the simplified
analysis is that depending on the level of simpli-

fication they may generate false alarms (spurious

solutions) to be eliminated by a sub-sequent de-
tailed analysis.

The complete toolchain using VIATRA
(Varró, 2003) as transformation engine between

a UML dialect for the engineering models of

safety-critical embedded systems and depend-
ability analysis models is currently under elabo-

ration in the framework of the GENESYS EU-

FP7 research project.

REFERENCES

Barták, R. (2001) Theory and practice of con-

straint propagation. In Proceedings of the 3rd

Workshop on Constraint Programming for De-
cision and Control (CPDC2001), Wydavnictvo

Pracovni Komputerowej, pp 7–14.
Clarke E. M., Grumberg O. and Long D. E.

(1994) Model Checking and Abstraction.

ACM Tansactions on Programming Languages
and Systems, 16(5):1512–1542.

Chang E., Manna Z. and Pnueli A. (1994) Com-

positional Verification of Real-Time Systems.
In Proceedings of the 9th Annual IEEE Sym-

posium on Logic in Computer Science, pp

458–465. IEEE Computer Society Press.
Majzik I., Huszerl G., Pataricza A., Kosmidis K.

and Dal Cin M. (2002) Quantitative analysis of

UML Statechart models of dependable sys-
tems. The Computer Journal, 45(3):260–277.

Majzik I., Pataricza A. and Bondavalli A. (2003)

Architecting Dependable Systems, volume

2677 of LNCS, chapter Stochastic Dependabil-

ity Analysis of System Architecte Based on

UML Models, pp 219–244. Springer-Verlag.
Pataricza A. (2002) From the general resource

model to a general fault modeling paradigm?

(2002) In Workshop on Critical Systems De-
velopment with UML, pp 114–115.

Pataricza A. (2003) Meta-model based fault

modeling in UML designs. In Suppl. Proc.
DSN 2003: The International IEEE Confer-

ence on Dependable Systems and Networks,

IEEE Press, pp 72–73.
Pataricza A. (2006) Model-based dependability

analysis. DSc Thesis, Hungarian Academy of

Sciences
Saidi H. (2000) Model checking guided abstrac-

tion and analysis. In Proceedings of the Sev-

enth International Static Analysis Symposium-
SAS2000.

Tsang E. (1993) Foundations of constraint satis-

faction. Academic Press.
Varró D. (2003) Automated model transforma-

tions for the analysis of IT systems. PhD the-

sis, Budapest University of Technology and
Economics.

